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Currents and Conduction Losses in
Unilateral Finline

CHRIS OLLEY AND T. ROZZI, SENIOR MEMBER, IEEE

.4h.vtsYlci —This ptrper presents a rigorous calculation of currents, con-

duction losses, and Q factors of the fundamental and higher order modes

of unilateral finline. The latter, in particular, are important in estimating

the loss for practical components. The approach is based on a Ritz–Galerkin

variational development of, first, the field in the fin gap in terms of

functions which intrinsically satisfy the edge condition and, second, the

currents in the fin also satisfying the same properties.

Results show losses to be higher than previously estimated, in very good

agreement with experiment.

I. INTRODUCTION

M UCH EFFORT currently is being directed at

analyses of E-plane guiding structures. One of the

earliest such structures to emerge was finline [1], a form of

planar ridge waveguide. As the mathematical approaches

evolved, notably the spectral-domain technique [2], analyses

began to appear [3]. Results on dispersion, higher order

modes [4], finite metallization thickness [5], etc., have been

published by various workers. However, very little work

was produced on the analysis of finline loss, with the

exception of that by Davies [6] for the fundamental mode.

Higher order modes, however, are responsible for power

storage at discontinuities occurring in practical compo-

nents. Moreover, loss performance is one of the major

drawbacks of finline. There is a need, therefore, for more

detailed work, including an investigation of the wall cur-

rents and losses in higher order modes.

The analysis given here employs an expansion in the fin

gap based upon the Schwinger functions as detailed in an

earlier contribution [7], which includes a proper descrip-

tion of the edge condition. The inclusion of this effect is

found to give higher losses than predicted by [6], in agree-

ment with an experimental verification.

In addition, an alternative formulation of the obstacle

type employing an expansion of the fin currents in ap-

propriate Gegenbauer polynomials is presented here. In

fact since information about the fin currents is obtained as

a by-product of the loss analysis, it is interesting to ob-

serve the direct correspondence between these current dis-

tributions and those of the gap field. It was expected a

Manuscnpt received February 17, 1987; revised July 23, 1987. This
work was supported in part by the Sciences and Engineering Research
Councd nndcr Grant GR/C/84170 and CASE Award 62375

C. Olley is with GEC-Marconi Research, Great Baddow, Essex,
England

T. ROZZI is with the School of Electrical Engmeermg, University of
Bath, Claverton Down, Bath BA2 7AY, England.

IEEE Log Number 8717904.

priori that an aperture formulation as in [7] would be more

appropriate for narrow fin gaps, whereas an obstacle for-

mulation would be more effective for wide gaps. On the

basis of the results, however, it is concluded that finline is

best solved in terms of just an aperture formulation, within

the range of gap apertures commonly used in practice.

II. ANALYSIS: APERTURE FORMULATION

Consider the idealized unilateral finline structure given

in Fig. 1. Since the dielectrically loaded waveguide formed

by the substrate and housing supports only TE-to-y and

TM-to-y modes, respectively, it is convenient to describe

the fields in finline in terms of y-directed electric and

magnetic Hertzian vector potentials so that

E=– jtipv XIIh+k211, +vv.11, (1)

H=k211h+vv. IIh+ juev X~e (2)

where

II, =Yk(x, y)e-J8’ IIA = WC(X, y)e-JBz.

These potentials are constructed from the eigenmodes of

the structure without fins, and then coupled together to

satisfy the boundary conditions given by the fin. These

boundary conditions must include not only the normal

metallic wall conditions but also the conditions given by

the fin edge which makes finline modes hybrid.

Thus

t?

*,(X,-P) = ~u,n+,,l(x)+, n(y)

(3)

(4)
n

with

4,,,,(X) = ~ Cos :x
r

2 nn
+,n(x) = — sin —.x

a a

for symmetric

of the form

8,, =2n>0 8.=1.

modes. The above lead to field expansions

Ek(x, y) = f ExM@hn(x)xn(y) (5)
n=o

where +,,(y) are somewhat tedious to derive and can be

found by substituting the potentials (3) and (4) into (1)
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Fig. 1. Idealized unilateral finline—axis positioning and dimension
details.

and (2). Expansions similar to (5) are thus found for the

remaining components, as listed in Appendix I.

Using the concept of an equivalent transverse circuit, we

readily formulate a system of integral equations describing

the coupling effects of the fin. For fields to the right of

y=o,

[1
–H=(x)

:/~x(X) dx

H Yl;(x, x’) Yg(x, x’)——
fin gap Y2~(X, X’) Y2; (X, x’)

and for fields to the left

[1
Hz(x)

-;(HX(x)dx

[1
EX(X’)

ad dx’ (6)
~ ~E:(x’)

Ex(x’)

‘{ [
Y;(x, x’) Y;(x, x’)

— 1[ 1ad
fin gap Y;(x, x’) Y~(x, x’) ~ ~Ez(x’)

dx’ (7)

where Y” R are the Green’s admittances of the cross

section [7].

Solution for a finline mode is then obtained by imposing

continuity of fields over the fin gap (which in fact corre-

sponds to resonance of the transverse equivalent network,

see Fig. 2). Hence by adding (6) and (7), we obtain the

combined integral equations

where ~, denotes the integral operator whose kernel is

~,(x, x’) of (6) and (7).

In order to achieve a solution of the integral equations

for resonance while adequately representing the boundary

conditions of the fin, we expand onto the basis space

originally introduced by Schwinger for the analysis of

infinitely thin irises [8] which implicitly satisfy the

boundary conditions at the fin edges. With the above

expansion, the integral equations are transformed into

— ‘OL

Fig. 2. Simplified transverse equivalent circuit.

matrix equations:

where the matrices are

sake of completeness.

(9)

repeated in Appendix II for the

As the S~hwinger functions themselves have been de-

rived from the conformal mapping of fields in a parallel-

plate wavcguide onto a waveguide with iris, convergence of

the expansion is very fast. In fact for quasi-static cases, e.g.

at cutoff, only one function is required. Recourse to matrix

equations is only needed to allow for small dynamic cor-

rections in the general solution, (2x 2) matrices being all

that is normally required. The Schwinger functions thus

lead to a highly convergent solution for all finline modes.

Having obtained solution equation (9), the electric and

magnetic fields within the finline can be determined from

the field expansions, such as (5). The coefficients U& and

Uh,, used to construct the potentials and, implicit in the
functions +k(x, y) are obtained from the aperture field

expansion as

rnnl

“’=&-Jz”n’10)
Yn;f-’ [1

~EX. – jfiEz.

“= ‘“c m ‘“)

[1z E,n

“’’J:””% “2)

where the field coefficients EX,, and Ezn are found from

the amplitudes X and Z in (9) as

EXn = P.=. X (14)

Ezq = P:*Z. (15)

It is noted that the coefficients U. are found to ,be purely

real for all finline modes by virtue of the fact that the

coefficients jBE2,, are always real; also the coefficients EX.
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are always real. Since the fundamental finline mode is

essentially TE in the slot, the coefficients E,H can often be

neglected altogether.

With detailed knowledge of the finline fields, we are

now in a position to evaluate power flow, slot voltage, wall

currents, losses, etc. Furthermore, having obtained the

fields in the form of (5), integrals with x have been

reduced to simple summations.

III. OBSTACLE FORMULATION

As an alternative to the aperture formulation and in

order to effect a comparison, an obstacle-type solution

based on an expansion for the fin currents was alsa

investigated.

Using the concept of a transverse equivalent network, a

set of integral equations defining a relationship between

electric fields in the gap and the fin currents can be readily

obtained as

for fields infinitesimally left of y = O and as

for fields to the right.

Hence by adding (1) and (2), we obtain the integral

equation for resonance:

with ~11 = ~~1 + ~1~, etc. This formulation, therefore, is

based upon a common fin current distribution to both

sides of the resonance equation, i.e., an assumption of

continuous currents in the equivalent circuit.

In order to employ an appropriate set of basis functions,

it is convenient to slightly redefine the axis positioning to

that of Fig. 3. Green’s impedance operators may be ob-

tained using orthogonality as before. Moreover, symmetry

about x = a/2 implies that only the functions +fi.(x)

corresponding to n even are involved in these operators.

In applying the Galerkin method, (16) and (17) are

expanded directly onto a set of functions defined over the

fin and including the appropriate edge condition. Such an

expansion is possible in terms of Gegenbauer polynomials

chosen to be orthogonal under the weight function:

mX2

w’(x)= 1– ;

which introduces the required edge condition at x = + t.

y.c)

Fig. 3 Axis orientation for obstacle formulation.

7,

x=a/2
X=t,

X.o

- %L

Fig. 4. Series equivalent cmcuit.

The current expansions may therefore be defined

J-X(x) = f Jxmv’i7c:(z4)
r)l=o

as

(19)

(20)

where u = x/t and C:(u) are the appropriate Gegenbauer

polynomials of order m. These are only defined over the

region O < x < t since the current densities JX(X) and

J:(x) cannot exist in the aperture region. Thus the range of

integration within the impedance operators is also re-

stricted to this range.

With the help of the above basis, integral equation (18)

is more conveniently written as a matrix equation:

[22][--’:ZI=0
(21)

where JX, for instance, is a column vector of the coeffi-
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Fig. 5. Comparison of finline dispersion curves for various values of normalized fin gaps (w/a).

‘cients JX~, and

Z~ = f Z~~Qfl. Qt.
~=o

The coefficients Q.~ are defined as

Q.. = ~-c:(+hn(tu) du.

The analytic evaluation of these coefficients is given in

Appendix III.

It will be found that n = O components only arise again

in 211, and as with the aperture formulation, this funda-

mental component may be taken out of the matrix system,

so that (21) becomes

Zo+z. =o (22)

where Z. = Z~~ + ZO~ and the series fin impedance z, is

given by

1
~ Q;. [211–212%1.221] ‘l” QO.
—.

s

This may therefore be interpreted as the resonance of the

series equivalent circuit, as in Fig. 4. As the fins vanish

into the side walls, the impedance z, becomes large and

solution approaches the impedance pole in ZO (defining

modes in the dielectrically loaded waveguide and identical

to the condition YO= O).
Numerical implementation of (22) was improved by

making use of the quasi-static components to form imped-

ance sums from which the frequency variation had been

removed. These have to be evaluated numerically, whereas

the Schwinger approach enabled such infinite sums to be

evaluated analytically.

Results

Dispersion results for the fundamental mode over a

range of fin gaps were found to be in close agreement with

the aperture formulation, proving the validity of the ob-

stacle approach. Samples of dispersion curves are pre-

sented in Fig. 5. However of more interest are the conver-

gence properties of the Gegenbauer polynomial expansion

for the fin currents.

It was found in general that matrix orders of at least 3

by 3 were required to achieve convergence in the JX expan-

sion, although the longitudinal current was essentially given

by one term. This is shown in Table I, which gives the

expansion coefficients obtained at 10 GHz for three differ-

ent fin gaps.

While the two formulations are in close agreement, the

aperture formulation yields marginally faster convergence

of the expansion for the slot field, necessitating a lower

matrix order. The applicability of Gegenbauer polynomials

has been demonstrated and a satisfactory means of formu-

lation established (despite the initial choice of divergent

impedances). Thus, although finline is best solved in terms

of an aperture formulation, the obstacle approach may be

superior in other E-plane structures such as suspended

strip line.

IV. CURRENT DISTRIBUTIONS

Using the theory described above, the wall currents for

various finline modes were investigated. For the moment

we shall consider the fundamental mode only.

The currents within a closed metallic waveguide fall into

two categories: the circulating currents induced by 11= at

the metallic surfaces and the axial currents induced by the

transverse magnetic fields. In finline, the former currents

rise from zero at the fin edge, divide at the intersection of
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TABLE I
FIN ~uRKI.N’rs EXPANSION COEFFICIENTS JX.. AND .JZ... FOR TJ.,,,

VARIOUS NORMALIZED FIN GAPS AT X-BAND ‘r’

—

X-band finline, F = 10. o caz, wla = 0.050.

----.—-—-

---- —----

1

2

3

4

-—-———---.-———-..——

J%

-Y=t

-0.145653

-0.037’ 377

-0.010047

-0.004687

1.000000

0.115555

0.007631

0.014367

——.—--———— ———
-—-——---——————.

Flg 7. Schematic isometric diagram ofaxial currents

the fins with the housing, and circulate around to the other

fin edge, as illustrated in Fig. 6. For the fundamental

mode, the distribution of these currents shows little varia-

tion around the guide apart from zeros of order ros at the

fin edges. It is therefore apparent that the current node

which is present in the broad wall of conventional wave-

guide operating in the fundamental TEOI mode is dis-

placed onto the edges of the intruding fins. This is of

major practical significance, since the construction tech-

nique commonly employed with conventional waveguides

utilizes this node as the mating point between two machin-

ing. This method, however, now is highly problematic

when applied to finline because of the reason above and it

requires in practice improved forms of choking, such as the

one described in [9].

The axial currents are found from HX and Hy depending

on the direction of the normal. Here the wall currents are

modified in the opposite sense, as shown in a schematic

isometric form in Fig. 7. The central current maximum in

the broad wall of the waveguide operating in the TEOI

mode becomes split into two maxima, with a node appear-

ing at the intersection of the fins and the housing where x-

and y-directed magnetic field cannot exist. However, of

more significance to the losses is the edge condition on the

fins which gives rise to a singularity of r-05 in the

transverse fields. Although it may be argued that the edge

effect is weakened by the fact that the skin depth is much

less than the metallization thickness, there is evidence to

suggest that at 10 GHz, where the skin depth in copper is

approximately 1 pm, the singularity is still of the order of

r – 0-5 for a metallization thickness of approximately 35 pm

-—-.-——.-——————.

X-band finline, F = 10.0 c%Iz, w/a = 0.200.

. ..——--.————————

J%

–0.055179

-0.054885

-0.003898

-0.005063

- ..— — —————

-———————

1.000000

0.143113

-0.015850

0.012%4

.————————-—.

X-band finline, F = 10.0 Ghz, w/a = O. 800.

-- —-—---—

J%

-0.520287

-0.311005

-0.194383

-o.133317

-—-—-———.

1

2

3

4

-——

.

1.000000

0.496639

0.309794

0.215881

---+---

.=:— _
2

I 1
I

JX w JX JX ! I

,=s _
2

JY

(1 oz/ft’).

V. Loss CALCULATIONS—COMPARISON WITH

EXPERIMENT

The attenuation factor due to the conductor losses

obtained using the standard perturbational expression:

is

R,/lH,12dl

aC = 2jjE x H. a, dS (23)

Y = -(h+s) y=o y=c

Fig. 6. Schematic diagram of finline circulating currents

where R ~ is the surface resistance given

where p is the resistivity.
by R,= q.Lp/2,
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In performing the above calculations, it was possible to

make a distinction ‘between losses due to the fins and those

due to the housing. Moreover the evaluation of the power

flow integral allows one to quantify the proportion of

power within the dielectric. From knowledge of the power

flow, the” finline impedance” was derived using the defini-

tion

z=+ (24)

where the quantity P is the power flow given by the

denominator of (23) and V, is the slot voltage obtained

simply from the slot field EX.

Fig. 8 shows calculated loss per wavelength in Q-band

finline for various fin and housing metals, while Fig. 9

shows the proportion of power dissipated on the fins. As

expected, this proportion increases rapidly as the fins

intrude into the guide. However, reducing the normalized

fin gap below 0.2, i.e., within the range of fin gaps found

in practice, produces little further change.

10’

103

10 I

91

2
4
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1

0 5 10 15 20 25 30

F,equency/Wz

Fig. 10 Q Factors for the frost five modes in X-band finline.

It is noted that slot fields are linked to the transverse

model fields, whereas housing currents are predominantly

due to the longitudinal magnetic fields and are conse-

quently of a circulating nature.

A smaller fin gap will increasingly concentrate trans-

verse fields to the slot region with increased fin currents,

but in order to support these, the housing currents must

also increase. This ultimately retains a fixed ratio between

the two losses. The housing material therefore has an

appreciable influence on the overall conduction losses, as

those due to the singularity at the fin edges do not swamp

all other losses.

In order to allow a comparison with experiment, the Q

factor defined by

277 x total energy stored per unit length
Q=

total energy dissipated per unit length per cycle
(25)

was also calculated. This also provides a useful qu~tity

when applied to (evanescent) higher order modes and for

comparison between transmission media.

The total stored energy is obtained by evaluating

J
~= clE12dS. (26)

Fig. 10 presents results on calculated Q factor versus

frequency for the first few finline modes, including the

effect of dielectric losses for completeness. The cutoff

points in the first three modes can be seen from the peaks

indicated, although this effect seems to become less pro-

nounced as mode order increases. Within the operating
range of the fundamental mode, the higher order mode Q

factors are increasingly rapidly from the collapse in value

at low frequency. The second mode in particular has a very

high Q factor, once propagating, due to its very small

interaction with the fins.
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Fig. 11 shows a comparison between calculated and

measured Q factor in X-band finline. It can be seen that

there is a very good agreement with theory for the nar-

rower fin gap, giving a Q factor of the order of 1000. For

the wider fin gap, where the Q factor is predicted to be of

the order of 2500, miscellaneous losses therefore are seen

to have a much greater impact. Although an improved

form of choke virtually eliminated leakage along the struc-

ture, problems still remained, with the end shorts required

to form the finline resonator producing the greater vari-

ance in results for the wider fin gap. However, even these

results at least show finline losses to be of the order of

those predicted.

VI. CONCLUSIONS

We have presented a rigorous calculation of currents

and conduction losses in unilateral finline, comparing an

aperture formulation to an obstacle formulation of the

problem for the fundamental and higher order modes. The

results indicate higher than hitherto predicted values of

losses, in agreement with experiment.

APPENDIX I

FIELD DISTRIBUTIONS

Here the functions .EXH( y), ~Yn(-y), etc., used in the

construction of the spatial field variations are given.

A. E,,,(y)

Region (l): –(h+s) <y< –s:

n7r

sinhk:(y+h+s)
(Al)

sinh(k~.s + 0),,,) “

Region (2): –s < y <0:

k:sinh[k~(y+s)+~en]

cosh (k;s + 0., )

(A2)

Region (3): O < y <1:

sinhk; (~–y)
J%,(Y) = -E..

sinh k~l “
(A3)

B. E=,,(y)

Region (l): –(h-t-s) <y< –s:

lc~sinhk~(y+h+s)

cosh(k:s + 13efl)

~v j~EX~ i- ~Ez,,

+ jup —
a jtipk~

sinhk:(-y+h+s)

sinh(kjs + 6fi,, ) “

Region (2): –s < y <O:

sinh 6~.

sinh k~h

(A4)

coth (k:S + (?Cn)

Ez,, (y) =– j~ k,
n k;

Region (3): O < y <1:

E,,,(Y) = E:,,
sinhk;(~ – y)

sinh k,~l “
(A6)
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c. E,,,(v)

Region (l): –(A+s) <y< –s:

c,cosh6~~ coshk:(y+h+,s)
(A7)

cosh k;~ cosh (k;s + O,n) “

Region (2): –s < y <O:

[

coth(k:s + 8,.) n~
q,,(Y) = ~; —E.. + jBE.fi

n a 1
cosh[kj(y+.s)+ den]

(AS)
sinh(k;s + 6e~) “

Region (3): O < y < t:

[

coth k~l nw
EY}, (’.v) = – k. ~E,. + jBE.. 1

coshk~(t–y)

n cosh k~l “

(A9)

The magnetic fields are now given.

D. H.,,(Y)

Region (l): –(h+’s) <y< –s:

‘EXn -t- j~Ezn
coth(k~s + 19,u) a

HX,, (y)=–@3
k; k;

c.cosh~,~ coshk; (y+ h +s)

cosh k:h cosh ( k; + d,. )

k;coshk;(y+h+s)
(A1O)

sinh(k~s + d~u) “

Region (2): –s < y <O:

- k;cosh[kn(y +s)+~~~]
(All)

sinh(k~s + t!lh~) “

Region (3): O < y < i:

–coshk:(t–y)

cosh k;l

.T jBE.,, + ;Ez. - k;coshk;(l - y)
_—

a jtipk~ cosh k;t “

(A12)

E. Hz,,(y)

Region (l): –(h + s) < y < –s:

‘EX. + j~Ezncoth (k;s + 8,,,) a
H=,,(y) = j~t

k; k:

~,coshO,~ coshk:(y + h +S)

cosh k;h cosh (k;s + O,n)

nv

k:sinhk;(y+h+s)
(A13)

sinh(k~s + d~.) “

Region (2): –s < y <0:

= EXn – jfiEz,,coth (k;s + 8=. ) a
Hz,,(y) = jtic

k; k:

sinli[k~(y+s)+o,~]

cosh (k;s + Oe,)

n~
jbfixn + —E.n

k~sinh[k~(y +s)+flkn]
(A14)

sinh(k~s + (?~fl) “

Region (3): O < y <~:

–coshk:(i–y)

cosh k;~

–i; coshk:(t–y)
(A15)

sinh k;l “
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Region(l): –(h+.s)<y <-s:

H,,,,(y)=:
[
jf3EXn + ~ E,,,

Jti/t 1

Region (2): –s < y <0:

Region (3): O < y < ~:

H.,,(J’)=+[ E E=,,1
sinhk;(~ – y)

– jBE,,, + ~
JO~ sinh k,~l

where

(A16)

(A17)

(A18)

APPENDIX II

GREEN’S ADMITTANCES

The matrices appearing in (9) are obtained from the

general expression
co

i=l,2 j=l,2

where

and

1
Y ~2,, = j– Sitf7), U)s2Tn

(KIM - y;M + Y:’ - Y:’)
n

Y21,,= – Y12,,.

The summation starts from n = O only for the Yll subma-

trix. All others start from n =1, since E, cannot have a

fundamental component.

APPENDIX III

The coefficients Q,,., are obtained analytically from the

result given in [10] so that

where a = 2 mt /a. The relationship between the factorial

and the gamma function of integer arguments allows fur-

ther simplification, but first the small argument limit of

the Bessel functions must be examined so as to determine

the coefficients for the n = O case.

Consider the quotient appearing in (A20):

J2m+l(n~)
2na. “

(A21)

Employing the small argument limit for the Bessel func-

tion gives

[1
n~2m+l

[-1
na2m

7 1“2

2na r(~+l) = 4r(m+l)”
(A22)

It can be seen from the above that for n = O, Q~~ = O,

unless m = O, in which case

(A23)

For n >0, (A19) simplifies to

J2~+1(na) 2 ~A24)
Qn~= (-l)n77(2m+2) ~na ;

while for n + a the asymptotic form is

r l–2m ]

Qn. =(–l)”n(2m+2)~
[Cos ‘a– 8m+4n I

an ra 2na “

(A25)

From the above it can be seen that convergence of the

coefficients Q,l ~, is very fast, and since they are known

analytically, the integral equations may be readily con-

verted into matrix form.

ACKNOWLEDGMENT

The authors wish to express their thanks to their col-

leagues P. Sargeaunt, C. Rycroft, and S. Clarke of GEC-

Marconi Research Centre, Great Baddow, Chelmsford,

Essex, for their support of this work.

[1]

[~1

[3]

[4]

[5]

[6]

REFERENCES

P, J, Meier, “Integrated fm-hne mdhmeter components,” IEEE
TMFIS. kflcro~uoe Theo~v Tech., vol. MTI-22, pp. 1200–1216, Dec.
197’4,

L- P, Schmidt and T, Itoh, “ Spectral domam analysis of dominant
and higher order modes in fin-f rees,” [EEE Tranr. M?crowcrrx
Theocp Tech , vol. MTT-28, pp. 981–985, Nov. 1980,
J II Knorr and P M. Shayda, “ Milhmeter-wave fu-line character-
istics, ” IEEE Truny. Mlcrowut,e Theorp Tech,, vol. MTT-28, pp.
737-743, July 1980
A. S. Omar and K Schiinemann, “Formulation of the singular
integral equation technique for planar transmission lines,” IEEE
Trans Microwave Theoty Tech., vol. MTT-33, pp. 1313-1321, Dec.
1985.
R. Vahldieck, “Accurate hybrid-mode anafysis of various finhne
conf]gurat]ons including multilayered dielectrics, finite metalliza-
hon thickness, and substrate holding grooves,” IEEE Tram. Mwro-
waw, Theo[t Tech., vol. MTT-32, pp. 1454– 1460, Nov. 1984
D Mmshekar-Syahkal and J B. Davies, “An accurate umfied
solut Ion to var]ous f]n-line structures of phase constant characteris-
tic mlpcdance and attenuation,” IEEE Trans. Mzcrowave Theory
Te(h , VO], MTT30, pp. 1854-1861, Nov. 198’2.



01.IJ:Y ANI) ROZZI : C(JRRENTS AND CONDUCTION LOSSES IN UNILATERAL FINLINE 95

[7]

[8]

[9]

[10]

C. A. Olley and T. Rozzi, “Systematic characterization of the
spectrum of unilateral ‘finline,” IEEE Trans. Microwave Theory
Tech,, vol. MIT-34, pp 1147-1156, Nov. 1986.
R. E. Collin, Field Theory of Guided Waves. New York:
McGraw-Hill, 1960.
K. Tomiyasu and J. J. Bolus, “Characteristics of a new serrated
choke,” IRE Trans. Microwuue Theory Tech., vol. MTT-4, pp.
33-36, Jan. 1956.
I. S. Gradshteyn and T. M. Ryzzhik, Tables ojIntegrals Series and

Products. New York: Academic Press, 1965, p. 830.

Chris Olley was born in Bath, England, in 1960.
He obtained the B.SC (Hen) degree in 1983, and
the Ph.D degree in electrical ~ngineering from
the University of Bath in June 1987. His research
topic was the characterisationof finline and the
work was sponsored by the Science and En-
gineering Research Council and GEC-Marconi
Research at Great Baddow, Essex, where Dr.
Olley is cnrrently a member of staff.

Dr. Olley is a member of the Institution of
Electrical Engineers (IEE) and of the Institution

of Electronic and Radio Engineers (IERE), UK. He was awarded the IEE
Student Prizcin 1981 and the IEESouth Western Region Young Mere-
hers Award in 1985.

T. Rozzi (M66–SM74) obtained the degree of
‘Dottore’ in physics from the University of Piss
in 1965 and the Ph.D. degree in electronic en-
gineering at Leeds University in 1968. In June
1987 he received the degree of D.SC from the
university of Bath.

From 1968 to 1978 he was a Research Scientist
at the Philips Research Laboratories, Eindhoven,
the Netherlands, having spent one year, 1975, at
the Antenna Laboratory, University of Illinois,
Urbana. In 1975 he was awarded the Microwave

Prize of the Microwave Theory and Technique Group of the Institute of
Electrical and Electronic Engineers. In 1978 he was appointed to the
Chair of Electrical Engineering at the University of Liverpool and
subsequently was appointed to the Chair of Electronics and Head of the
Electronics Group at the University of Bath in 1981. From 1983 to 1986
he held the additional responsibility of Head of the School of Electrical
Engineering at Bath. Since 1986 Dr. Rozzi has also held the ‘ordinary
chair’ of Antennas at the Faculty of Engineering, University of Ancona,
Italy.


