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Currents and Conduction Losses in
Unilateral Finline

CHRIS OLLEY aND T. ROZZI, SENIOR MEMBER, IEERE

Abstract — This paper presents a rigorous calculation of currents, con-
duction losses, and Q factors of the fundamental and higher order modes
of unilateral finline. The latter, in particular, are important in estimating
the loss for practical components. The approach is based on a Ritz—Galerkin
variational development of, first, the field in the fin gap in terms of
functions which intrinsically satisfy the edge condition and, second, the
currents in the fin also satisfying the same properties.

Results show losses to be higher than previously estimated, in very good
agreement with experiment.

I. INTRODUCTION

UCH EFFORT currently is being directed at
Ménalyses of E-plane guiding structures. One of the
earliest such structures to emerge was finline [1], a form of
planar ridge waveguide. As the mathematical approaches
evolved, notably the spectral-domain technique [2], analyses
began to appear [3]. Results on dispersion, higher order
modes [4], finite metallization thickness [5], etc., have been
published by various workers. However, very little work
was produced on the analysis of finline loss, with the
exception of that by Davies [6] for the fundamental mode.

Higher order modes, however, are responsible for power
storage at discontinuities occurring in practical compo-
nents. Moreover, loss performance is one of the major
drawbacks of finline. There is a need, therefore, for more
detailed work, including an investigation of the wall cur-
rents and losses in higher order modes.

The analysis given here employs an expansion in the fin
gap based upon the Schwinger functions as detailed in an
earlier contribution [7], which includes a proper descrip-
tion of the edge condition. The inclusion of this effect is
found to give higher losses than predicted by [6], in agree-
ment with an experimental verification.

In addition, an alternative formulation of the obstacle
type employing an expansion of the fin currents in ap-
propriate Gegenbauer polynomials is presented here. In
fact since information about the fin currents is obtained as
a by-product of the loss analysis, it is interesting to ob-
serve the direct correspondence between these current dis-
tributions and those of the gap field. It was expected a
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priori that an aperture formulation as in [7] would be more
appropriate for narrow fin gaps, whereas an obstacle for-
mulation would be more effective for wide gaps. On the
basis of the results, however, it is concluded that finline is
best solved in terms of just an aperture formulation, within
the range of gap apertures commonly used in practice.

II. ANALYSIS: APERTURE FORMULATION

Consider the idealized unilateral finline structure given
in Fig. 1. Since the dielectrically loaded waveguide formed
by the substrate and housing supports only TE-to-y and
TM-to-y modes, respectively, it is convenient to describe
the fields in finline in terms of y-directed electric and
magnetic Hertzian vector potentials so that

E=— jouv XII, + k*TI,+vVv-1I, M
H=KI,+vv-I,+ jwev X1, (2)
where
I, =¥,(x, p)e I, =¥,(x, y)e .

These potentials are constructed from the eigenmodes of
the structure without fins, and then coupled together to
satisfy the boundary conditions given by the fin. These
boundary conditions must include not only the normal
metallic wall conditions but also the conditions given by
the fin edge which makes finline modes hybrid.

Thus

‘I,h(xﬂy)=2Uhn¢hn(x)4’hn(y) (3)
P (%, 5) = X Upnben (2) ¥en (1) (4)
with
/6, nmw 2 nw
¢hn(x) = — C0S —X ¢’en(x) = \/t sin —x
a a a a
8,=2n>0 8, =1.

for symmetric modes. The above lead to field expansions
of the form

Ex.y)= 3 Eou()x.(») (5)

n=0

where ¢ ,(y) are somewhat tedious to derive and can be
found by substituting the potentials (3) and (4) into (1)
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Idealized unilateral finline—axis positioning and dimension
details.

Fig. 1.

and (2). Expansions similar to (5) are thus found for the
remaining components, as listed in Appendix 1.

Using the concept of an equivalent transverse circuit, we
readily formulate a system of integral equations describing
the coupling effects of the fin. For fields to the right of
y=0,

— H.(x)
7
—[H (x) dx
a
’ 7 EX x/
_ [ i) S P
fin gap| YR(x,x")  Y5(x,x") ;—H;E;(x/)
and for fields to the left
H,(x)
T
— —fH (x)dx
a
14 4 E‘C x’
Cp [ e B
fin gap Yﬁ(x,x’) Y;i(x,x’) ;T—EEZ(X')

where YR are the Green’s admittances of the cross
section [7].

Solution for a finline mode is then obtained by imposing
continuity of fields over the fin gap (which in fact corre-

sponds to resonance of the transverse equivalent network, .

see Fig. 2). Hence by adding (6) and (7), we obtain the
combined integral equations

. . E,
li):n Y:z}' a 9 -0 (8)
Yn Yy ; EC"E:

where Y, , denotes the integral operator whose kernel is
Y, (x,x") of (6) and (7).

In order to achieve a solution of the integral equations
for resonance while adequately representing the boundary
conditions of the fin, we expand onto the basis space
originally introduced by Schwinger for the analysis of
infinitely thin irises [8] which implicitly satisfy the
boundary conditions at the fin edges. With the above
expansion, the integral equations are transformed into

87

19 N & 4 & =
= YoL Ys Yor —e—
IX -1 \®

Fig. 2. Simplified transverse equivalent circuit.

matrix equations:
{Yu Y12”X} =0
Y, Y,z
where the matrices are repeated in Appendix II for the
sake of completeness.

As the Schwinger functions themselves have been de-
rived from the conformal mapping of fields in a parallel-
plate waveguide onto a waveguide with iris, convergence of
the expansion is very fast. In fact for quasi-static cases, e.g.
at cutoff, only one function is required. Recourse to matrix
equations is only needed to allow for small dynamic cor-
rections in the general solution, (2X2) matrices being all
that is normally required. The Schwinger functions thus
lead to a highly convergent solution for all finline modes.

Having obtained solution equation (9), the electric and
magnetic fields within the finline can be determined from
the field expansions, such as (5). The coefficients U,, and
U,, used to construct the potentials and, implicit in the

functions ,(x, y) are obtained from the aperture field
expansion as

©)

nmw
1 - JBExn + [_] E;:n
Upy=—"— (10)
T jop nw )2
e
a
n
M [7}Exn—JBE,,,
R__"
Uen Juwe nw 2 (11)
=T
a
1 JBExn+[—]Ezn
Up=7— (12)
ST
a
nw} )
YTM —_ Exn+JBEzn
UL——— nlL a L (13)
en wa [E]2+ )

where the field coefficients E,, and E,, are found from

the amplitudes X and Z in (9) as
Exn =P nT' X
E,=PlZ.

(14)
(15)

It is noted that the coefficients U, are found to be purely

real for all finline modes by virtue of the fact that the
coefficients jBE,, are always real; also the coefficients E,

zn
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are always real. Since the fundamental finline mode is
essentially TE in the slot, the coefficients E,, can often be
neglected altogether.

With detailed knowledge of the finline fields, we are
now in a position to evaluate power flow, slot voltage, wall
currents, losses, etc. Furthermore, having obtained the
fields in the form of (5), integrals with x have been
reduced to simple summations.

III. OBSTACLE FORMULATION

As an alternative to the aperture formulation and in
order to effect a comparison, an obstacle-type solution
based on an expansion for the fin currents was also
investigated.

Using the concept of a transverse equivalent network, a
set of integral equations defining a relationship between
electric fields in the gap and the fin currents can be readily
obtained as

— EL ~ ~ J
x ZlLl Zle - X ¢
ad (=l S |_T I d (16)
———F Zn Zyp [z dx
73X a

ER ~ ~ J
2 ]
a d Nl i (17)
———Fk Zy Zy zax
T Jx a

for fields to the right.
Hence by adding (1) and (2), we obtain the integral
equation for resonance:
5 5 J
Zy 2y X

. . T =0
Zn Znl|~ ;fJZ dx

(18)

with Z, = ZL + ZR, etc. This formulation, therefore, is
based upon a common fin current distribution to both
sides of the resonance equation, i.e., an assumption of
continuous currents in the equivalent circuit.

In order to employ an appropriate set of basis functions,
it is convenient to slightly redefine the axis positioning to
that of Fig. 3. Green’s impedance operators may be ob-
tained using orthogonality as before. Moreover, symmetry
about x=a/2 implies that only the functions ¢,,(x)
corresponding to » even are involved in these operators.

In applying the Galerkin method, (16) and (17) are
expanded directly onto a set of functions defined over the
fin and including the appropriate edge condition. Such an
expansion is possible in terms of Gegenbauer polynomials
chosen to be orthogonal under the weight function:

which introduces the required edge condition at x = + ¢.

x=a/2
x=t

x=0

y=0
Fig. 3  Axis orjentation for obstacle formulation.
z
—
~— ZoR
-1
18] 2
—a— ZolL
[ ®] LD —

Fig. 4. Series equivalent circuit.

The current expansions may therefore be defined as

J.(x)= f‘, JX, V1~ u?CL(u) (19)

nt =

M
“frw= Xz it @)
m=0

where u = x /t and C}(u) are the appropriate Gegenbauer
polynomials of order m. These are only defined over the
region 0 <x <t since the current densities J (x) and
J_(x) cannot exist in the aperture region. Thus the range of
integration within the impedance operators is also re-
stricted to this range.

With the help of the above basis, integral equation (18)
is more conveniently written as a matrix equation:

[Zn JX
Zy

Z“ )= (21)

where JX, for instance, is a column vector of the coeffi-
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‘cients JX,, and
Zji= iozthn'Qf :
The coefficients Q,,, are defined as
Qnm=f0t\/l_——u_2C,},(u)¢hn(tu)du.

The analytic evaluation of these coefficients is given in
Appendix III. o

It will be found that n = 0 components only arise again
in Z,;;, and as with the aperture formulation, this funda-
mental component may be taken out of the matrix system,
so that (21) becomes

Zo+2Z,=0 (22)

where Z,= Z % + ZJE and the series fin impedance z, is
given by

1 -1
P (178 [Zu - Z12'Zz—21'Z21] Q-

5

This may therefore be interpreted as the resonance of the
series equivalent circuit, as in Fig. 4. As the fins vanish
into the side walls, the impedance z; becomes large and
solution approaches the impedance pole in Z; (defining
modes in the dielectrically loaded waveguide and identical
to the condition Y, = 0).

Numerical implementation of (22) was improved by
making use of the quasi-static components to form imped-
ance sums from which the frequency variation had been
removed. These have to be evaluated numerically, whereas
the Schwinger approach enabled such infinite sums to be
evaluated analytically.

Comparison of finline dispersion curves for various values of normalized fin gaps (w/a).

Results

Dispersion results for the fundamental mode over a
range of fin gaps were found to be in close agreement with
the aperture formulation, proving the validity of the ob-
stacle approach. Samples of dispersion curves are pre-
sented in Fig. 5. However of more interest are the conver-
gence properties of the Gegenbauer polynomial expansion
for the fin currents.

It was found in general that matrix orders of at least 3
by 3 were required to achieve convergence in the J, expan-
sion, although the longitudinal current was essentially given
by one term. This is shown in Table I, which gives the
expansion coefficients obtained at 10 GHz for three differ-
ent fin gaps.

While the two formulations are in close agreement, the
aperture formulation yields marginally faster convergence
of the expansion for the slot field, necessitating a lower
matrix order. The applicability of Gegenbauer polynomials
has been demonstrated and a satisfactory means of formu-
lation established (despite the initial choice of divergent
impedances). Thus, although finline is best solved in terms
of an aperture formulation, the obstacle approach may be
superior in other E-plane structures such as suspended
strip line.

IV. CURRENT DISTRIBUTIONS

Using the theory described above, the wall currents for
various finline modes were investigated. For the moment
we shall consider the fundamental mode only.

The currents within a closed metallic waveguide fall into
two categories: the circulating currents induced by H, at
the metallic surfaces and the axial currents induced by the

. transverse magnetic fields. In finline, the former currents

rise from zero at the fin edge, divide at the intersection of
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TABLEI
FiN CURRLNTS EXPANSION COEFFICIENTS JX,, AND JZ,, FOR
VARIOUS NORMALIZED FIN GAPS AT X-BAND
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X-band finline, ¥ = 10.0 Ghz, w/a = 0.,050.
TXe Iy,

1 -0.145653 1.000000

2 ~0.037377 0.115555

3 -0.010047 0.007631

4 ~-0.004687 0.014367

X~-band finline, F = 10.0 Ghz, w/a = 0.200.

IXp IZp

1 -0.055179 1.000000

2 -0,054885 0.143113

3 -0.003898 ~0.,015850

4 -0.005063 0.012464

X-band finline, F = 10.0 Ghz, w/a = 0.800.

T IZm

1 -0.520287 1.000000

2 -0.311005 0.496639

3 -0.194383 0.309794

4 -0.133317 0.215881

Jy
a J—
2
’ Jx w # Jx Jx
a__
5 —
Jy
y = —(h+s) y=0

Fig. 6.

Schematic diagram of finline circulating currents

y=t

Fig 7.

Schematic isometric diagram of axial currents.

the fins with the housing, and circulate around to the other
fin edge, as illustrated in Fig. 6. For the fundamental
mode, the distribution of these currents shows little varia-
tion around the guide apart from zeros of order r%° at the
fin edges. It is therefore apparent that the current node
which is present in the broad wall of conventional wave-
guide operating in the fundamental TE, mode is dis-
placed onto the edges of the intruding fins. This is of
major practical significance, since the construction tech-
nique commonly employed with conventional waveguides
utilizes this node as the mating point between two machin-
ings. This method, however, now is highly problematic
when applied to finline because of the reason above and it
requires in practice improved forms of choking, such as the
one described in {9].

The axial currents are found from H, and H, depending
on the direction of the normal. Here the wall currents are
modified in the opposite sense, as shown in a schematic
isometric form in Fig. 7. The central current maximum in
the broad wall of the waveguide operating in the TE
mode becomes split into two maxima, with a node appear-
ing at the intersection of the fins and the housing where x-
and y-directed magnetic field cannot exist. However, of
more significance to the losses is the edge condition on the
fins which gives rise to a singularity of r~% in the
transverse fields. Although it may be argued that the edge
effect is weakened by the fact that the skin depth is much
less than the metallization thickness, there is evidence to
suggest that at 10 GHz, where the skin depth in copper is
approximately 1 pm, the singularity is still of the order of
r~ % for a metallization thickness of approximately 35 pm
(1 oz/ft?).

V. Loss CALCULATIONS— COMPARISON WITH
EXPERIMENT

The attentuation factor due to the conductor losses is

obtained using the standard perturbaﬁonal expression:
R, [|H)dI
] (23)
2/[EXH-a,dS

where R is the surface resistance given by R, = wpp/2,
where p is the resistivity.
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Fig 9. Curves of Cf, the proportion of power dissipated on the fins for
various normalized in fin gaps (w/a) copper housing and fins.

In performing the above calculations, it was possible to
make a distinction between losses due to the fins and those
due to the housing. Moreover the evaluation of the power
flow integral allows one to quantify the proportion of
power within the dielectric. From knowledge of the power
flow, the “finline impedance” was derived using the defini-
tion

(%)

Vs
P

7z =

(24)

where the quantity P is the power flow given by the
denominator of (23) and V, is the slot voltage obtained
simply from the slot field E,.

Fig. 8 shows calculated loss per wavelength in Q-band
finline for various fin and housing metals, while Fig. 9
shows the proportion of power dissipated on the fins. As
expected, this proportion increases rapidly as the fins
intrude into the guide. However, reducing the normalized
fin gap below 0.2, i.e., within the range of fin gaps found
in practice, produces little further change.

GwaA N

-

Q —~ factor
— -
=] =]
T T

7
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L1 L ]
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Frequency/GHz

Fig. 10 @ Factors for the first five modes in X-band finline.

It is noted that slot fields are linked to the transverse
model fields, whereas housing currents are predominantly
due to the longitudinal magnetic fields and are conse-
quently of a circulating nature.

A smaller fin gap will increasingly concentrate trans-
verse fields to the slot region with increased fin currents,
but in order to support these, the housing currents must
also increase. This ultimately retains a fixed ratio between
the two losses. The housing material therefore has an
appreciable influence on the overall conduction losses, as
those due to the singularity at the fin edges do not swamp
all other losses.

In order to allow a comparison with experiment, the Q
factor defined by

2@ X total energy stored per unit length

0= (25)

total energy dissipated per unit length per cycle

was also calculated. This also provides a useful quantity
when applied to (evanescent) higher order modes and for
comparison between transmission media.

The total stored energy is obtained by evaluating

W=fe|E|2dS. (26)

Fig. 10 presents results on calculated Q factor versus
frequency for the first few finline modes, including the
effect of dielectric losses for completeness. The cutoff
points in the first three modes can be seen from the peaks
indicated, although this effect seems to become less pro-
nounced as mode order increases. Within the operating
range of the fundamental mode, the higher order mode @
factors are increasingly rapidly from the collapse in value
at low frequency. The second mode in particular has a very
high Q factor, once propagating, due to its very small
interaction with the fins.
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Fig. 11 shows a comparison between calculated and
measured Q factor in X-band finline. It can be seen that
there is a very good agreement with theory for the nar-
rower fin gap, giving a Q factor of the order of 1000. For
the wider fin gap, where the Q factor is predicted to be of
the order of 2500, miscellaneous losses therefore are seen
to have a much greater impact. Although an improved
form of choke virtually eliminated leakage along the struc-
ture, problems still remained, with the end shorts required
to form the finline resonator producing the greater vari-
ance in results for the wider fin gap. However, even these
results at least show finline losses to be of the order of
those predicted.

VI. CONCLUSIONS

We have presented a rigorous calculation of currents
and conduction losses in unilateral finline, comparing an
aperture formulation to an obstacle formulation of the
problem for the fundamental and higher order modes. The
results indicate higher than hitherto predicted values of
losses, in agreement with experiment.

APPENDIX |
FIELD DISTRIBUTIONS
Here the functions E,,(»), E,,(»), etc., used in the
construction of the spatial field variations are given.

A E_ ()
Region (1): —(A+s)<y<-—s:

nw
nw coth(kis+4,,) TExn + JBE.,
E.\'n(.v) = —_a— ks k2

€,coshd,, k¢sinhké(y+h+s)
coshkh  cosh(kis+86,,)

. nmw
]IBExn + ~a_E:n Sinhahn

sinh kh

+
orh Jopk;

sinhk4(y+h+s)
sinh(kis+6,,)

(A1)
Region (2): —s<y<0:

nw
na coth (k3s+0,,) 5 Lont BE-

E =
() a ks ks
kisinh[ks(y+5)+6,,]
COSh(kf,s + Hen)
. naw
]BExn + 7EZ" Sil‘lh [kf,(y + S) + ahn]
+ wufB - 2 :
Jopk? sinh(kis+40,,)
(A2)
Region (3): 0 <y <u
sinhk&(c— y)
Ea(9) = Byt (A3

sinh k%t
B. E_(y)
Region (1): —(A+s)<y<-—s:

nw
coth(kis+6,,) 5 Lot IBE.0 ¢ coshe,

£ _
(7)== B 5 k2 cosh k¢h
ke sinh k“(y + h+s)
' cosh(kis+4,,)
. nw
 na BEat —Eo ginhe,,
+ Jjop— 2 inh k¢
a jopk; sinh kSh
sinhk(y+h+s
sin ) (A%)
sinh(k}s+4, )

Region (2): —s<y<O:

nm .
coth(kis+4,,) _;Exn + JBE.,

Ezn(y)=_jﬁ ky k2
kisinh[ki(y+5)+8,,]
cosh(kis+6,,)
) nw
+ . nw ]BEXII + -a—EZ}'I
TR Jopk?
' sinh [k3(y+5)+8,,] (AS)
sinh(kis+4,,)
Region 3): 0 <y <
sinhk?(v— y)
E:H(y) = E.‘_'n_—_~—_ (A6)

sinh k%
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C. E.® Region (3): 0 < y <
Region (1): —(h+s)<y<—s nTo. .
Ho(y)=; nw cothky E,, — JBE.,
coth k;S + 0en nm . xa\V) = Jjwe— a
E\'N(y) = ——_—(—w](s_-—_) [_Exn + jlg'EZn] a kn k’%
" ¢ —coshk?(¢—y)
¢,coshd,, coshk;(y+h+s) . cosh k%

. . A7
coshkh cosh(kis+4,,) (A7)

nw
na BE+ TEM —kZcoshks(c—~y)
Region (2): —s <y <0: -

a Jopk? cosh kgt .
coth(kis+8,,) [nm Al2
E\'n(y) = __(_"___)_ ——Exn + jBEzn ( )
: k; a
h s 0 E H;’n(y)
Vo8 [k,,(y+s)+ en] (A8) Region (1): —(h+s)<y<—s:
sinh(kis +4,,) nar
—E,_, + jBE
: th(k s+ 8 xn zn
Region (3): 0 < y <u H(y) = joe coth ( ]:f en) a .
: cothk [ na . coshk?(s—y) " "
E_,,,,(.V) =7 [—— n zn]—m €,coshd,, coshk?(y+h+s)
§ i (A9) coshk?h cosh(kis+4,,)
nmw
The magnetic fields are now given. N ;BJIB Eont 7EZ" sinh8,,
_— P ieuk? sinhkCh
D. 'y :
. kesinhk&(y+h+
Region (1): —(h+s)<y<-—s . ,,s.m 2y ) (A13)
. sinh (kis+6,,)
s —E,_, + jBE
coth (ks +8, ) ~, “xn™ JPEn Region (2): — )
=— " e gion (2): —s<y<0:
Hxn(y) (A)(B k; k,z, nw B
. —E_,— JBE
th{kss + 6 xn " JPL,
. €, coshf,, coshkZ(y+h+s) H,(y)= jweco h( ]:f en) _a =
coshk?h  cosh(k:+4,,) " "
na sinh [k$(y+s)+80,,]
nar JBE =+ — Eon sinne, cosh(kis+8,,)
Ca jepk? - sinhk(h BE+E
. a
a a + -——.-—-——
. kécoshk(y+h+s) (A10) B jopk?
sinh (k;s +6,,) kssinh[kS(y+s)+8,,]
. L on : n : hn (A14)
Region (2): —s <y <0: ‘ sinh(kis+6,,)
na Region (3): 0 <y <u
s —E,_, + jBE
COth(kns-i-aen) xn T JPE;, nw .
Hxn(y) == weﬂ kS £ k2 . hw COthk:L 7Ex" ‘]BEZ"
n n Hxn(y)zjwej k:,l k’%
cosh [k(y+s5)+86,,] —cosh k(1 »)
cosh(kis+4,,) . cosh k5
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n JORKI,
> kyjcosh|k,(y+s)t4,, ~ k4 cosh k(1 —
e lk i ra,] | )

sinh(kSs+, ) ' sinh k2t
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F H\'II(.)/Y)
Region (1): —(h+s)<y<-—s:

an(y) =T

sinhd,, sinhk‘(y+h+s)
" sinh kéh sinh(ki,+6,,)

(A16)
Region (2): —s <y <0:
17 nw
H}'ll(y) = _— [JBEXH—EZH]
Jou a

sinh [k3(y+5)+8,,]
" sinh(kis+4,,)

(A17)

Region (3): 0 <y <u
sinh k(¢ — y)

1 nw
1)y =—|— jBE. + —E. Al8
an()) JOJ‘LL[ ]B XH a ,.n:i Sil’lhk:L ( )
where
nw 2
k¢ = ——} +B*—k§
| a
[ n 2
k)= ——] +,82—e,k3
| a
nw 2
b= | [+
| a

APPENDIX I1
GREEN’S ADMITTANCES

The matrices appearing in (9) are obtained from the
general expression

o0
T
Z jnPn Pn (A19)
n
i=1,2 J =1’2
where
Vi, = (R4 Y1) cosr, + (YR8 + Y, 1F ) sin’ s,
1 1
Yor, = ;E(YHEE +Y,17)cos?, + —~(YTM +¥™)sin?7,
and
Vi =i sin?r,cos?r, (Y, ™M — Y IM + y,TE — y TB)
YZln == Y12n'

The summation starts from n =0 only for the ¥}, subma-
trix. All others start from » =1, since E, cannot have a
fundamental component.

APPENDIX III

The coefficients Q,,, are obtained analytically from the
result given in [10] so that

(=1)"aT@m+2) J,, . (na) 8n
: on

Owm= (A20)

2m 2ne

where a=2xt/a. The relationship between the factorial
and the gamma function of integer arguments allows fur-
ther simplification, but first the small argument limit of
the Bessel functions must be examined so as to determine
the coefficients for the n = 0 case.

Consider the quotient appearing in (A20):

J2m+1(na)

A21
2na ( )

Employing the small argument limit for the Bessel func-
tion gives
no 2m+1 ne l2m
53 NN &Y

2na  T(m+1) 4I(m+1)

It can be seen from the above that for n=0, Q,m=0,
unless m = 0, in which case

(A22)

1o
Qo= Z ; (A23)
For n> 0, (A19) simplifies to
=(—1)"r(2m+2) 22— 2’”“( ) (A24)
while for n — a the asymptotic form is
[ 1-2m
cos|na~ —=
- 8m +4
=(-1)"7r(2m+2 :
m= (=) (2m )anmx 2na
(A25)

From the above it can be seen that convergence of the
coefficients Q,,, is very fast, and since they are known
analytically, the integral equations may be readily con-
verted into matrix form.
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